
LED-Matrix cheat sheet
(for use with Frank's framework)

Overview
• Prototype for an animation
• Time schedule
• Reference: Functions and constants

Prototype for an animation

void PrototypeAnimation(int len_s) // len_s = length in seconds
{
 // your variables
 int x=0; // x-position of the dot

 // standard loop part (copy this part, no need to understand)
 int wait=100; // defines 100 ms steps
 int counter=1000/wait*len_s; // len_s = length in seconds
 while (counter--) // loop
 { frame_delay(wait); // waits to fill the 100 ms
 swap_buffers(1); // show last frame, start the next frame

 // simulation step
 paint(x,0, 255,0,0); // red (255,0,0) dot at x,0 (0=y is top of screen)
 x = x+1; // move right
 if (x >= SCRdx) x=0; // if at border (SCRdx) restart at 0
 } // SCRdx / SCRdy is screen size given by framework
}

Frame and Time schedule

The programming environment is the IDE of Arduino. Arduino programs are
use a „void loop() { … }“ function that will be called indefinitely.
Into this function you can call your animations, resulting in a time
schedule. Some lines of code in the beginning are needed anway, you
don't need to change them, but they must remain in the code.

#include "LightMatrixKernelLib.h"

int time_turbo=1; // std=1 more(n)= n times faster

int slowmotion=1; // std=1 more(n)= n times slower

int DO_show_as_ascii=0; // std=0 1=show as ASCII output pseudo graphics

void user_init() // arduino init() is already called in lib

{ // if you want to init something, do it here

}

// insert here your animation functions → ←

void loop() // repeated indefinitely:

{ string_anim("HELLO",400,1, 64,255,64); // 1. Write HELLO in light green

 PrototypeAnimation(6); // 2. PrototypeAnimation should run 6 seconds

 Fireworks(8); // 3. fireworks animation should run 8 seconds

}

Reference: Functions and constants

paint(x,y, r,g,b);

 set a pixel at x,y (int) with the color r,g,b (int)

 0 <= r, g, b <= 255 0=dark 255=max.bright r=red g=green b=blue

 0 <= x < SCRdx (horizontal screen size given by framework)

 0 <= y < SCRdy (vertical screen size)

 It's ok to set pixel outside this area (without effect).

paint_hi(x,y, r,g,b);

 similar to paint(...), but

 1. (x,y) are fixed point numbers (int value FIXP is 1.0)

 This one is bit tricky: to set Pixel at Position (1,2)

 you must set (int) numbers 1*FIXP and 2*FIXP. The nice thing is

 you can set the pixel between the coordinates (1,2) and (1,3)

 as an example. You would write a yellow pixel e.g.:

 paint_hi(1*FIXP,2*FIXP+FIXP/2, 255,255,0);

 // Fireworks(...) example animation does it like this

 or – more intuitively - by use of float numbers:

 paint_hi(1*FIXP,2.5*FIXP, 255,255,0); // easy, isn't it?

 2. r,g,b can grow above 255! Result: Light floods a bit in nearby

 pixels

string_anim(char *string_to_write, int time_to_show_the_string,

 int set_1_if_to_animate_print_of_chars_slowly__else_0,

 unsigned char r, unsigned char g, unsigned char b);

 Print the string an then wait some time, so the spectator can see

 it for a while, e.g. 400 ms. The color will be r,g,b (0..255).

 If the text is too long, it wil scroll automatically.

 Character allowed: A-Z, space

analogRead – ask for potentiometer value

 int mypos = analogRead(A1);

 If you want to make something interactive,

 you can ask for the position value of a rotary knob.

 Resulting values are in the range 0..1023.

Reference: Functions and constants continued

 (more special, usually not needed)

paint_add(int x, int y, int r, int g, int b);

 Basically the same as paint, but it adds the r,g,b values instead

 of overwriting them into the pixel cell.

 (paint_hi(...) does this also.)

frame_delay(int ms);

 Waits until ms milliseconds elapsed relative to its last call.

swap_buffers(int mode);

 Write the current image into the LED-Matrix and if mode==1, then

 clear the current image for a clean start of the next frame.

char_paint(int x, int y, char c,

 unsigned char r, unsigned char g, unsigned char b);

 Paints a char (A-Z) at position x,y.

void get_pixel(int x, int y)

 Read the current pixel, returns r,g,b as: return_rgb.r, …

int time_turbo = acceleration; // global variable, default 1

 Set this acceleration to speed up the animations (might not work)

 int slowmotion=slowdown; // the same for slower animation

int DO_show_as_ascii = on_off; // global variable, 1=on 0=off

 Writes the animation to serial output in ASCII graphics if on;

 useful to check for hardware defects or to write an animation,

 if you have no physical LED matrix to test with.

